D25481K-B5
 40MM SDS Max Combination Hammer w/ AVC 5 Kg 220 V

FEATURES

$>$ Ideal for drilling anchor fixing and through holes in concrete and masonry from 12 to 40 mm in diameter. Core drilling up to 90 mm
> Chain drive improves durability and increases efficiency together with an oil filled gearbox to ensure total component lubrication and superior heat dissipation
> Ergonomic, compact and slim line design maximizes control and offers easy access to confined spaces
$>$ Excellent power to weight ratio: 8 Joules of impact energy delivered by a 6.1 kg hammer
$>$ Rotation-stop for medium-light demolition applications
> Unique dust sealing protection to prevent even the finest dust ingress into the hammer mechanism delivering high durability and extended tool life
$>$ Hammer mechanism is optimized by reducing the number of components and by improving dampening to deliver maximum impact energy and therefore the efficiency to drill into the hardest concrete
$>$ Efficient mechanism delivers impact blows directly to the bit without losses through excessive vibration and rebound dampening reduces stress to the tool
$>$ Soft rubber grip handles improve user comfort lowering fatigue during extended use

SPECIFICATIONS

Tool Holder	SDS-Max
Power Input	1100 Watts
Power Output	500 Watt
Impact energy (EPTA 05/2009)	8 J
Load Speed	400 rpm
Blows per Minute	2740 bpm

Max. Drilling Capacity [Concrete] 40 mm
Max. Drilling Capacity [Breakthrough bit] 55 mm
Max. Drilling Capacity [Core bit] 90 mm
Weight 6.1 kg
Length457 mmHeight245 mm
Width104 mm
Hand/Arm Vibration - Hammer drilling into concrete $18.3 \mathrm{~m} / \mathrm{s}^{2}$Uncertainty K 1 (Vibration)
Hand/Arm Vibration - Chiseling $13.2 \mathrm{~m} / \mathrm{s}^{2}$Uncertainty K 2 (Vibration)Sound Pressure$1.8 \mathrm{~m} / \mathrm{s}^{2}$$1.6 \mathrm{~m} / \mathrm{s}^{2}$$94 \mathrm{~dB}(\mathrm{~A})$Sound Pressure Uncertainty
Sound Power$3 \mathrm{~dB}(\mathrm{~A})$
Sound Power Uncertainty
$3 \mathrm{~dB}(\mathrm{~A})$

