

Very High CMR, Wide V _{CC} Logic Gate Optocouplers

Technical Data

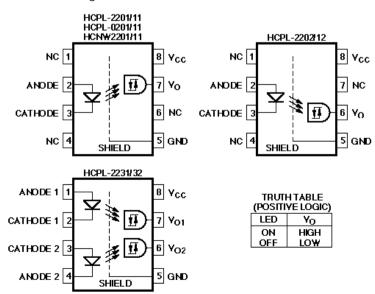
HCPL-2201	HCPL-2202
HCPL-2211	HCPL-2212
HCPL-2231	HCPL-2232
HCPL-0201	HCPL-0211
HCNW2201	HCNW2211

Features

- 10 kV/µs Minimum Common Mode Rejection (CMR) at V_{CM} = 1000 V (HCPL-2211/2212/0211/ 2232, HCNW2211)
- Wide Operating V _{CC} Range: 4.5 to 20 Volts
- 300 ns Propagation Delay Guaranteed over the Full Temperature Range
- 5 Mbd Typical Signal Rate
- Low Input Current (1.6 mA to 1.8 mA)
- Hysteresis
- Totem Pole Output (No Pullup Resistor Required)
- Available in 8-Pin DIP, SOIC-8, Widebody Packages
- Guaranteed Performance from -40°C to 85°C
- Safety Approval
 UL Recognized -2500 V rms
 for 1 minute (5000 V rms
 for 1 minute for
 HCNW22XX) per UL1577
 CSA Approved
 VDE 0884 Approved with
 V_{IORM} = 630 V _{peak} (HCPL-2211/2212 Option 060 only)
 and V_{IORM} = 1414 V _{peak}
 (HCNW22XX only)
 BSI Certified (HCNW22XX only)

 MIL-STD-1772 Version Available (HCPL-52XX/62XX)

Applications


- Isolation of High Speed Logic Systems
- Computer-Peripheral Interfaces
- Microprocessor System Interfaces
- Ground Loop Elimination
- Pulse Transformer Replacement
- High Speed Line Receiver
- Power Control Systems

Description

The HCPL-22XX, HCPL-02XX, and HCNW22XX are optically-coupled logic gates. The HCPL-22XX, and HCPL-02XX contain a GaAsP LED while the HCNW22XX contains an AlGaAs LED. The detectors have totem pole output stages and optical receiver input stages with built-in Schmitt triggers to provide logic-compatible waveforms, eliminating the need for additional waveshaping.

A superior internal shield on the HCPL-2211/12, HCPL-0211,

Functional Diagram

A 0.1 μF bypass capacitor must be connected between pins 5 and 8.

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

5965-3595E 1-113

HCPL-2232 and HCNW2211 guarantees common mode transient immunity of 10 kV/µs at a common mode voltage of 1000 volts.

The electrical and switching characteristics of the HCPL-22XX, HCPL-02XX and HCNW22XX are guaranteed from -40°C to +85°C and a $V_{\rm CC}$ from 4.5 volts to 20 volts. Low $I_{\rm F}$ and

wide V_{CC} range allow compatibility with TTL, LSTTL, and CMOS logic and result in lower power consumption compared to other high speed couplers. Logic signals are transmitted with a typical propagation delay of 150 ns.

Selection Guide

						Small-		Wideboo	dy	
Minimur	m CMR	Input	8-Pin DIP (300	Mil)	Out	line SO-8	(400	Mil)	Herr	netic
		On-	Single	Dual		Single		Single		Single and
dV/dt		Current	Channel	Channel		Channel	C	hannel	Dua	I Channel
(V/µs)	V _{CM} (V)	(mA)	Package	Package		Package	F	Package		Packages
1,000	50	1.6	HCPL-2200 ^[1,2]			HCPL-02	01	HCNW2	2201	
			HCPL-2201							
			HCPL-2202							
		1.8		HCPL-22	31					
2,500	400	1.6	HCPL-2219 ^[1,2]							
5,000[3]	300[3]	1.6	HCPL-2211			HCPL-02	11	HCNW2	2211	
			HCPL-2212							
		1.8		HCPL-22	32					
1,000	50	2.0								HCPL-52XX ^[2]
										HCPL-62XX ^[2]

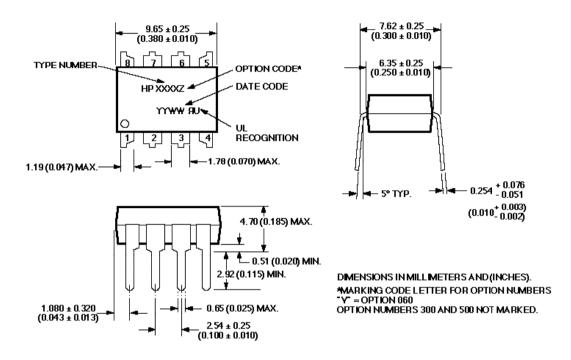
Notes:

- 1. HCPL-2200/2219 devices include output enable/disable function.
- 2. Technical data for the HCPL-2200/2219, HCPL-52XX and HCPL-62XX are on separate HP publications.
- 3. Minimum CMR of 10 kV/ μ s with V_{CM} = 1000 V can be achieved with input current, I_F , of 5 mA.

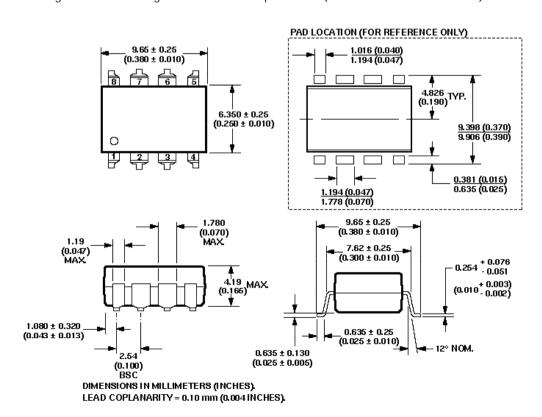
Ordering Information

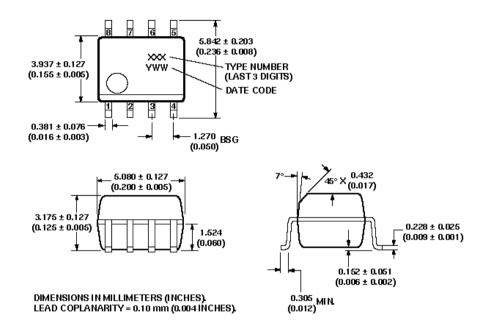

Specify Part Number followed by Option Number (if desired).

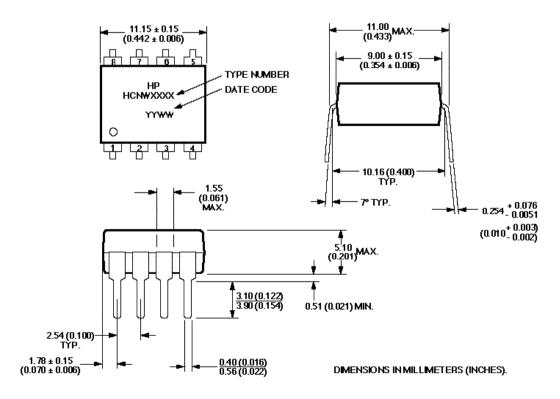
Example:

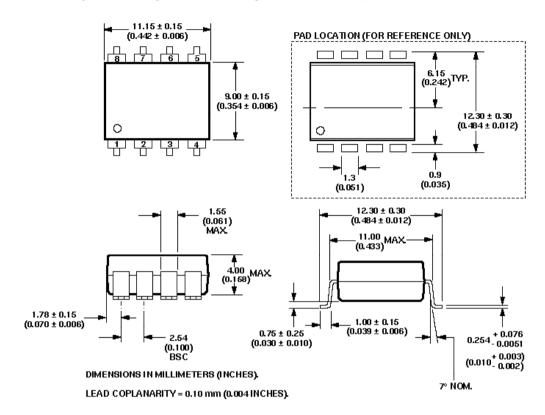


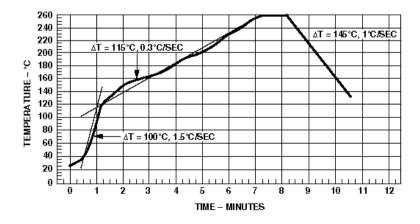
Option data sheets available. Contact your Hewlett-Packard sales representative or authorized distributor for information.


*For HCPL-2211/2212 only.


Package Outline Drawings 8-Pin DIP Package (HCPL-2201/02/11/12/31/32)


8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-2201/02/11/12/31/32)


Small-Outline SO-8 Package (HCPL-0201/11)


8-Pin Widebody DIP Package (HCNW2201/11)

8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW2201/11)

Solder Reflow Temperature Profile (HCPL-02XX and Gull Wing Surface Mount Option 300 Parts)

Note: Use of nonchlorine activated fluxes is highly recommended.

Regulatory Information

The HCPL-22XX/02XX and HCNW22XX have been approved by the following organizations:

UL

Recognized under UL 1577, Component Recognition Program, File E55361. CSA

Approved under CSA Component Acceptance Notice #5, File CA 88324.

VDE

Approved according to VDE 0884/06.92. (HCPL-2211/2212 Option 060 and HCNW22XX only)

BSI

Certification according to BS415:1994, (BS EN60065:1994); BS EN60950:1992 (BS7002:1992) and EN41003:1993 for Class II

applications. (HCNW22XX only)

Insulation and Safety Related Specifications 8-pin DIP Package

		8-Pin DIP		Widebody		
		(300 Mil)	SO-8	(400 Mil)		
Parameter	Symbol	Value	Value	Value U	nits	Conditions
Minimum External	L(101)	7.1	4.9	9.6	mm	Measured from input terminals
Air Gap (External						to output terminals, shortest
Clearance)						distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	4.8	10.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	1.0	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)		NA	NA	4.0	mm	Measured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	СТІ	200	200	200	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		IIIa	IIIa	IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

VDE 0884 Insulation Related Characteristics (HCPL-2211/2212 Option 060 ONLY)

Description	Symbol	Characteristic	Ψnits
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage 300 V rms		I-IV	
for rated mains voltage 450 V rms		1-111	
Climatic Classification		55/85/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	V _{IORM}	630	V peak
Input to Output Test Voltage, Method b* $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ sec, Partial Discharge < 5 pC	V _{PR}	1181	V peak
Input to Output Test Voltage, Method a* V _{IORM} x 1.5 = V _{PR} , Type and sample test, t _m = 60 sec, Partial Discharge < 5 pC	V _{PR}	945	V peak
Highest Allowable Overvoltage* (Transient Overvoltage, t _{ini} = 10 sec)	V _{IOTM}	6000	V peak
Safety Limiting Values (Maximum values allowed in the event of a failure, also see Figure 12, Thermal Derating curve.) Case Temperature Input Current Output Power	T _S	175 230 600	°C mA mW
Insulation Resistance at T_S , $V_{IO} = 500 \text{ V}$	$P_{S,OUTPUT}$ R_S	109	11100

^{*}Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description.

Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

VDE 0884 Insulation Related Characteristics (HCNW22XX ONLY)

Description	Symbol	Characteristic	ψnits
Installation classification per DIN VDE 0110/1.89, Table 1			
for rated mains voltage 600 V rms		I-IV	
for rated mains voltage 1000 V rms		1-111	
Climatic Classification		55/100/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	V _{IORM}	1414	V peak
Input to Output Test Voltage, Method b*			
V_{IORM} x 1.875 = V_{PR} , 100% Production Test with $t_m = 1$ sec,	V_{PR}	2652	V peak
Partial Discharge < 5 pC			
Input to Output Test Voltage, Method a*			
V_{IORM} x 1.5 = V_{PR} , Type and sample test,	V_{PR}	2121	V peak
t _m = 60 sec, Partial Discharge < 5 pC			
Highest Allowable Overvoltage*			
(Transient Overvoltage, t _{ini} = 10 sec)	V_{IOTM}	8000	V peak
Safety Limiting Values			
(Maximum values allowed in the event of a failure,			
also see Figure 12, Thermal Derating curve.)			
Case Temperature	T _S	150	°C
Current (Input Current I_F , $P_S = 0$)	I _{S,INPUT}	400	mA
Output Power	P _{S,OUTPUT}	700	mW
Insulation Resistance at T_S , $V_{IO} = 500 \text{ V}$	R_S	109	

^{*}Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description.

Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note	
Storage Temperature		T _S	-55	125	°C	
Operating Temperature		T _A	- 40	85	°C	
Average Forward Input Current	I _{F(AVG)}		10	mA	1	
Peak Transient Input Current (1 µs Pulse Width, 300 pps)	I _{F(TRAN)}		1.0	A	1	
(200 µs Pulse Width, < 1% Duty Cycle) HCNW22XX		T (TRAIN)		40	mA	
Reverse Input Voltage	Reverse Input Voltage			5	V	1
	HCNW22XX			3	1	
Average Output Current	Io		25	mA	1	
Supply Voltage		V _{CC}	0	20	V	
Output Voltage		V _O	-0.5	20	V	1
Total Package Power Dissipation		P _T		210	mW	2
	HCPL-223X	1		294	1	
Output Power Dissipation		Po	:	See Figure	e 7	1
Lead Solder Temperature (Through Only)	Lead Solder Temperature (Through Hole Parts			260°C for 10 sec., 1.6 mm below seating plane		
	HCNW22XX	260°C fo	r 10 sec.,	up to seat	ing plane	
Solder Reflow Temperature Profile Mount Parts Only)	See Pack	kage Outlir	ne Drawin	gs section		

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	V _{CC}	4.5	20	V
Forward Input Current (ON)	I _{F(ON)}	1.6*	5	mA
HCPL-22	3X	1.8†		
Forward Input Voltage (OFF)	V _{F(OFF)}	-	0.8	V
Operating Temperature	T _A	-40	85	°C
Junction Temperature	T _J	-40	125	°C
Fan Out	N		4	TTL Loads

^{*}The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% LED degradation quardband

Electrical Specifications

-40°C T_A 85°C, 4.5 V V_{CC} 20 V, 1.6 mA $I_{F(ON)}^*$ 5 mA, 0 V $V_{F(OFF)}$ 0.8 V, unless otherwise specified. All Typicals at T_A = 25°C. See Note 7.

Paramet	ter	Sym.	Min.	Тур. І	Max. L	nits	Test Condition	ns Fig	Not	е
Logic Low O	utput Voltage	V _{OL}			0.5	V	$I_{OL} = 6.4 \text{ mA} (4 \text{ TTL Loads})$		1, 3	1
Logic High C	Output Voltage	V _{OH}	2.4	* *		V	$I_{OH} = -2.6 \text{ mA}$		2, 3,	1
			2.7				$I_{OH} = -0.4 \text{ mA}$		8	
Output Leaka		I _{OHH}			100	μΑ	$V_{O} = 5.5 \text{ V}$	$I_F = 5 \text{ mA}$		1
$(V_{OUT} > V_{CC})$					500		$V_O = 20 \text{ V}$			
Logic Low Su	upply	I _{CCL}		3.7	6.0	mA	$V_{CC} = 5.5 \text{ V}$	$V_F = 0 V$		
Current				4.3	7.0		$V_{CC} = 20 \text{ V}$	I_0 = Open		
	HCPL-223X]		7.4	12.0		$V_{CC} = 5.5 \text{ V}$			
				8.6	14.0		$V_{CC} = 20 \text{ V}$			
Logic High S	upply	I _{CCH}		2.4	4.0	mA	$V_{CC} = 5.5 \text{ V}$	$I_F = 5 \text{ mA}$		
Current				2.7	5.0		$V_{CC} = 20 \text{ V}$	I_0 = Open		
	HCPL-223X	1		4.8	8.0		$V_{CC} = 5.5 \text{ V}$			
				5.4	10.0		$V_{CC} = 20 \text{ V}$			
Logic Low Sh		I _{OSL}	15			mA	$V_{O} = V_{CC} = 5.5 \text{ V}$	$V_F = 0 V$		1, 3
Output Curr	ent		20				$V_{O} = V_{CC} = 20 \text{ V}$			
Logic High S		I _{OSH}			-10	mA	$V_{CC} = 5.5 \text{ V}$	$I_F = 5 \text{ mA}$		1, 3
Output Curre	ent				-20		$V_{CC} = 20 \text{ V}$	$V_0 = GND$		
Input Forwar	rd Voltage	V _F		1.5	1.7	V	$T_A = 25^{\circ}C$	$I_F = 5 \text{ mA}$	4	1
					1.85] [
	HCNW22XX]		1.5	1.82		$T_A = 25^{\circ}C$			
					1.95					
Input Reverse	e Breakdown	BV _R	5			V	I _R = 10 μA			1
Voltage	HCNW22XX]	3				I _R = 100 μA			
Input Diode		V _F		-1.7		mV/°C	$I_F = 5 \text{ mA}$			
Coefficient	HCNW22XX	T_A		-1.4						
Input Capaci	tance	C _{IN}		60		pF	$f = 1 MHz, V_F = 0$) V		1, 4
	HCNW22XX			70						

^{*}For HCPL-223X, 1.8 mA $I_{F(ON)}$ 5 mA.

[†]The initial switching threshold is 1.8 mA or less. It is recommended that 2.5 mA be used to permit at least a 20% LED degradation guardband.

^{**}Typical $V_{OH} = V_{CC} - 2.1 \text{ V}.$

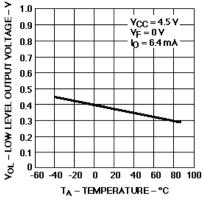
Switching Specifications (AC)

-40°C T_A 85°C, 4.5 V V_{CC} 20 V, 1.6 mA $I_{F(ON)}^*$ 5 mA, 0 V $V_{F(OFF)}$ All Typicals at T_A = 25°C, V_{CC} = 5 V, $I_{F(ON)}$ = 3 mA unless otherwise specified. 0.8 V.

Parameter	Sym.	Min.	Тур.	Max. L	nits	Test Conditions Fig	Not	е
Propagation Delay Time	t _{PHL}		150		ns	Without Peaking Capacitor	5, 6	1, 6
to Logic Low			160			HCNW22XX		
Output Level			150	300	1	With Peaking Capacitor		
Propagation Delay Time	t _{PLH}		110		ns	Without Peaking Capacitor	5, 6	1, 6
to Logic High			180			HCNW22XX		
Output Level			90	300		With Peaking Capacitor		
Output Rise Time (10-90%)	t _r		30		ns		5, 9	1
Output Fall Time (90-10%)	t _f		7		ns		5, 9	1

Parameter	Sym.	Device	Min. L	Inits	Test Condition	s Fig.	Note	
Logic High Common Mode Transient Immunity	CM _H	HCPL-2201/02 HCPL-0201 HCPL-2231 HCNW2201	1,000	V/µs	$ V_{CM} = 50 \text{ V}$ $I_F = 1.6 \text{ mA}^{\dagger}$	$V_{CC} = 5 \text{ V}$ $T_A = 25^{\circ}\text{C}$	10	1, 7
		HCPL-2211/12 HCPL-0211 HCPL-2232 HCNW2211	5,000	V/µs V/µs	$ V_{CM} = 300 \text{ V}$ $I_F = 1.6 \text{ mA}^{\ddagger}$ $ V_{CM} = 1 \text{ kV}$			
Logic Low Common Mode Transient Immunity	CM _L	HCPL-2201/02 HCPL-0201 HCPL-2231 HCNW2201	1,000	V/µs	$I_F = 5.0 \text{ mA}$ $ V_{CM} = 50 \text{ V}$	$V_F = 0 V$ $V_{CC} = 5 V$ $T_A = 25^{\circ}C$	10	1, 7
		HCPL-2211/12 HCPL-0211 HCPL-2232 HCNW2211	10,000	V/µs	$ V_{CM} = 1 \text{ kV}$			

^{*}For HCPL-223X, 1.8 mA $I_{F(ON)}$ 5 mA. t_{F} = 1.8 mA for HCPL-2231. t_{F} = 1.8 mA for HCPL-2232.


Package Characteristics

Parameter	Sym	Min.	Тур. І	Max. l	Inits	Test Conditions Fig	. Not	е
Input-Output Momer	itary V _{ISO}	2500			V rms	RH < 50%, t = 1 min.		5, 10
Withstand HCNV Voltage*	V22XX	5000				$T_A = 25^{\circ}C$		5, 11
Input-Output Resista	nce R _{I-O}		10 ¹²			$V_{I-O} = 500 \text{ Vdc}$		5
HCNV	V22XX	1012	10 ¹³			$T_A = 25^{\circ}C$		
		1011				$T_A = 100^{\circ}C$		
Input-Output Capaci	tance C _{I-O}		0.6		pF	f = 1 MHz,		5
HCNV	V22XX		0.5	0.6	1	$T_A = 25^{\circ}C$ $V_{I-O} = 0$ Vdc		
Input-Input Insulatio	n I _{I-I}		0.005		μΑ	Relative Humidity = 45%,		12
Leakage Current						$t = 5 \text{ s}, V_{I-I} = 500 \text{ V}$		
Resistance (Input-	out) R _{I-I}		10 ¹¹			V _{I-I} = 500 V		12
Capacitance (Input-I	nput) C _{I-I}		0.25		pF	f = 1 MHz		12

^{*}The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification or HP Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E.

Notes:

- 1. Each channel.
- 2. Derate total package power dissipation, P_T, linearly above 70°C free-air temperature at a rate of 4.5 mW/°C.
- 3. Duration of output short circuit time should not exceed 10 ms.
- 4. For single devices, input capacitance is measured between pin 2 and pin 3.
- 5. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.
- 6. The t_{PLH} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The t_{PHL} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
- 7. CM_H is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, $V_O > 2.0 \text{ V}$. CM_L is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, $V_O < 0.8 \text{ V}$.
- 8. For HCPL- $2\overline{2}$ 02/12, V_O is on pin 6.
- 9. Use of a 0.1 µF bypass capacitor connected between pins 5 and 8 is recommended.
- 10. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 3000 V rms for one second (leakage detection current limit, $I_{\text{I-O}} = 5 \,\mu\text{A}$). This test is performed before the 100% production test for partial discharge (Method b) shown in the VDE 0884 Insulation Characteristics Table, if applicable.
- 11. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for one second (leakage detection current limit, $I_{\text{LO}} = 5 \,\mu\text{A}$). This test is performed before the 100% production test for partial discharge (Method b) shown in the VDE 0884 Insulation Characteristics Table.
- 12. For HCPL-2231/32 only. Measured between pins 1 and 2, shorted together, and pins 3 and 4, shorted together.

T_A – TEMPERATURE – °C

Figure 1. Typical Logic Low Output Voltage vs. Temperature.

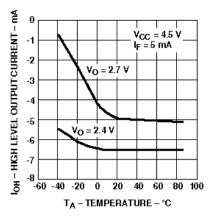


Figure 2. Typical Logic High Output Current vs. Temperature.

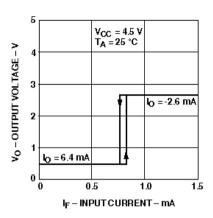
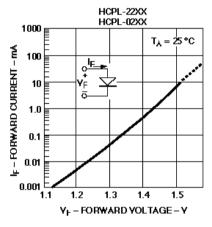



Figure 3. Typical Output Voltage vs. Forward Input Current.

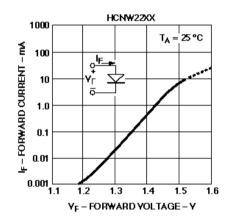
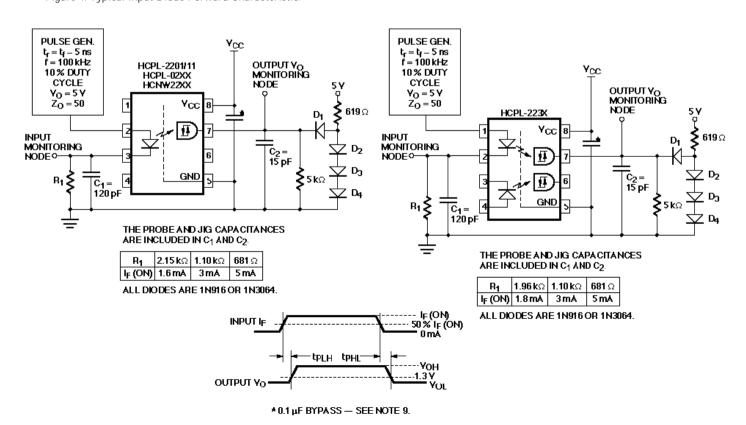
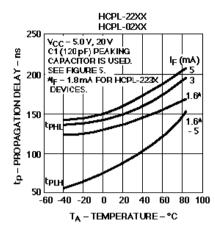
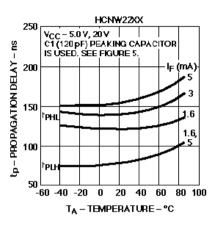





Figure 4. Typical Input Diode Forward Characteristic.

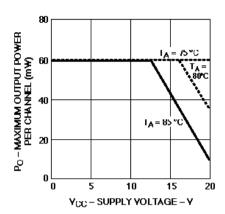
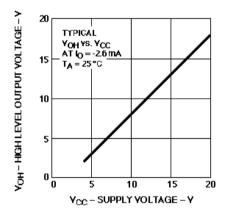



Figure 6. Typical Propagation Delays vs. Temperature.

Figure 7. Maximum Output Power per Channel vs. Supply Voltage.

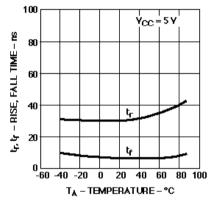


Figure 8. Typical Logic High Output Voltage vs. Supply Voltage.

Figure 9. Typical Rise, Fall Time vs. Temperature.

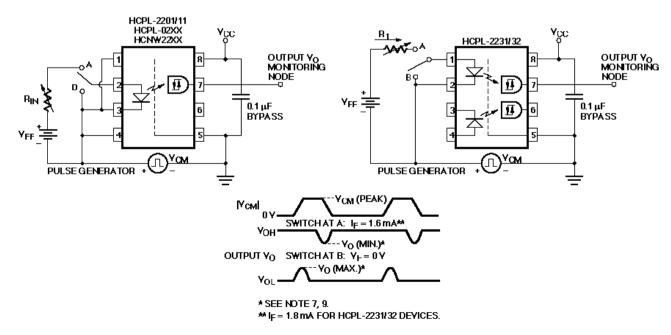


Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

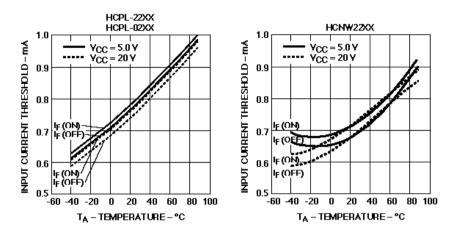


Figure 11. Typical Input Threshold Current vs. Temperature.

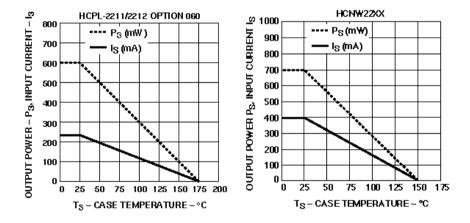


Figure 12. Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per VDE 0884.

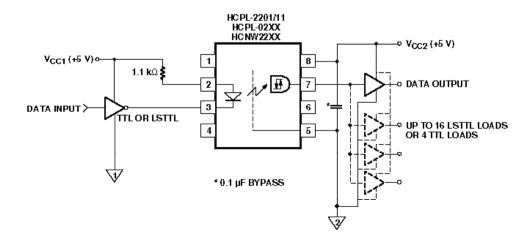


Figure 13a. Recommended LSTTL to LSTTL Circuit where 500 ns Propagation Delay is Sufficient.

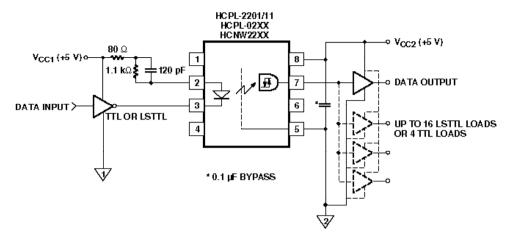


Figure 13b. Recommended LSTTL to LSTTL Circuit for Applications Requiring a Maximum Allowable Propagation Delay of 300 ns.

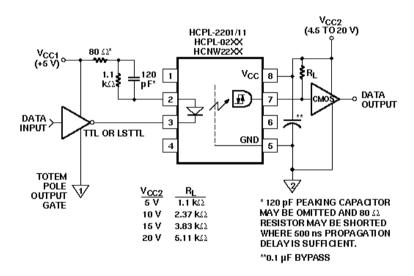


Figure 14. LSTTL to CMOS Interface Circuit.

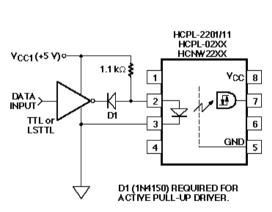


Figure 15. Alternative LED Drive Circuit.

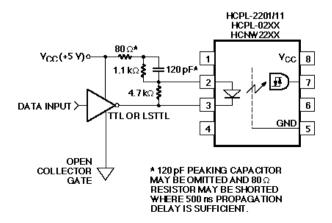


Figure 16. Series LED Drive with Open Collector Gate (4.7 k Resistor Shunts I $_{
m OH}$ from the LED).